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Abstract

In this paper, the behavior of an elastically mounted cylinder, subjected to vortex-induced vibrations (VIV), is

investigated by a low-dimensional model. The classical wake oscillator model, as a standard model, predicts the

behavior of the system at high mass-damping ratios but fails in modeling the system at low mass-damping ratios.

A modified wake oscillator model is introduced in order to describe the response of the system over a wide range of

mass-damping ratios. The results of this new model are compared to experimental results from the literature and shown

to be in good agreement. The new model can describe most of the features of vortex-induced vibration phenomenology,

such as the Griffin plot and lock-in domains.

& 2010 Elsevier Ltd. All rights reserved.
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1. Introduction

The highly specialized subject of vortex-induced vibrations (VIVs) is part of a number of disciplines, incorporating

fluid mechanics, structural mechanics, vibrations, computational fluid dynamics (CFD), acoustics, wavelet transforms,

complex demodulation analysis, statistics, and smart materials. They occur in many engineering situations, such as

bridges, stacks, transmission lines, aircraft control surfaces, offshore structures, thermowells, engines, heat exchangers,

marine cables, towed cables, drilling and production risers in petroleum production, mooring cables, moored structures,

tethered structures, buoyancy and spar hulls, pipelines, cable-laying, members of jacketed structures, and other

hydrodynamic and hydroacoustic applications (Sarpkaya, 2004). The practical significance of VIV has led to a large

number of fundamental studies, many of which are discussed in the comprehensive reviews of Parkinson (1989),

Sarpkaya (2004), and Williamson and Govardhan (2007).

The VIV phenomenon is result of the interaction between fluid and structure. A cross-flow flowing past bluff bodies is

usually unsteady. Beyond a critical Reynolds number, the boundary layer will separate from each side of the body to

form the so-called K�arm�an vortex street. The alternately shed vortices from the body generate periodic forces on the

structure, causing a structural vibration. The structural motion in turn influences the flow field, giving rise to nonlinear

fluid–structure interaction. As the flow velocity is increased or decreased so that the shedding frequency approaches the

natural frequency of the structure, the vortex shedding frequency suddenly locks onto the structural natural frequency.
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The resultant vibrations occur at or nearly at the natural frequency of the structure and vortices in the near wake input

energy to the cylinder. Large amplitude vortex-induced structural vibration can result (Blevins, 1990).

As was mentioned above, during lock-in, the frequency of vortex-shedding synchronizes with the natural frequency

of the structure. However, this synchronization does not occur in the same manner at high and low values of mass-

damping ratio. For high mass ratios, these two frequencies become equal within the lock-in regime (Feng, 1968). On the

other hand for low mass ratios the body oscillates at a distinctly higher frequency (Khalak and Williamson, 1997).

The maximum structural displacement at lock-in is expressed as a function of combined mass-damping parameter,

the so-called Skop–Griffin parameter SG (Skop, 1974). Skop and Griffin compiled several different experimental data to

predict response amplitudes. The results of compilations of many different investigations were plotted in a log–log form

by Griffin (1980). This plot is called the Griffin plot and is extensively used by practicing engineers (Khalak and

Williamson, 1999).

Different semi-empirical models have been used for describing VIV and lock-in phenomena, including wake oscillator

models (Bishop and Hassan, 1963; Hartlen and Currie, 1970; Griffin et al., 1973; Skop and Griffin, 1973), SDOF

models that use a single ordinary differential equation to describe the behavior of structural oscillator (Basu and

Vickery, 1983; Simiu and Scanlan, 1986; Goswami et al., 1993), force decomposition models in which the lift force is

decomposed into a fluid inertia force related to structure displacement and a fluid damping force related to structure

velocity (Griffin, 1980; Griffin and Koopman, 1997), and variational approaches (McIver, 1973; Benaroya and Wei,

2000).

The coupling of fluctuating lift force and vibrating structure can be modeled by a simple wake oscillator model. In

such models, the wake dynamics is assumed to follow a van der Pol equation. In fact, it is sufficient to have a self-

sustained oscillator with a limit cycle. The bluff body is then modeled by another oscillator excited by the wake

variable (de Langre, 2006). The effect of the motion of the structure on the wake is represented by a forcing term

in the van der Pol equation that can be proportional to displacement, velocity or acceleration of bluff body. Facchinetti

et al. (2004) have shown that the most appropriate forcing term is proportional to the acceleration of the

bluff body.

The classical wake oscillator model fails to predict the variation in the behavior of the system at low values of the

mass-damping ratio. Therefore, a modified wake oscillator model is introduced. Its analysis shows that the modified

model is considerably more accurate than the classical model and can be used over a wide range of mass-damping

ratios.
2. Classical wake oscillator model

Due to their occurrence in various scientific fields, ranging from biology, chemistry, physics to engineering, coupled

nonlinear oscillators have been a subject of particular interest in recent years (Rand and Holmes, 1980; Woafo et al.,

2005). Among these coupled systems, a particular class is the fluid–structure interaction system, which can be modeled

by phenomenological models based on wake oscillators. These models explain and simulate experimental results and

thus help understanding the physics of VIV, especially when computational limits arise for flow-field numerical

simulations. Therefore, in this section the classical wake oscillator model, commonly used in the literature (Facchinetti

et al., 2004; de Langre, 2006), is analyzed.
2.1. VIV model

The structure is an elastically mounted cylinder of diameter D. It is subjected to the fluid flow of steady velocity U

and can oscillate transversely to fluid flow, Fig. 1. The motion of this cylinder can be modeled by a simple linear

equation that is affected by fluid loading

ðms þmf Þ €Y þ ðcs þ cf Þ _Y þ kY ¼ S; ð1Þ

where overdots mean derivatives with respect to dimensional time T, and Y is the in-plane displacement of cylinder,

transversely to fluid flow, ms and k are, respectively, the mass and the stiffness of the cylinder in absence of fluid, cs

models viscous dissipation in supports, mf is fluid-added mass, which models inviscid inertia effects of fluid (Blevins,

1990), and cf the fluid-added damping, and read

mf ¼
1

4
pCmrD2; cf ¼

2pStU
D

grD2; ð2Þ
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Fig. 1. Model of elastically mounted cylinder coupled with wake oscillators for 2-D vortex-induced vibrations.
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where r is the fluid density, Cm=1 the added mass coefficient for a circular cylinder (Blevins, 1990), St the Strouhal

number, and g the fluid added damping coefficient depending on the mean sectional drag coefficient CD (Blevins, 1990).

We assume that g=0.8 (Facchinetti et al., 2004).

The forcing term S models the effects of vortices on structure and is defined as

S¼
1

2
rU2DCL; ð3Þ

where CL is the fluctuating lift coefficient.

The fluctuating nature of the vortex street can be modeled by a van der Pol oscillator (Nayfeh, 1993)

€q þ ef Oðq2�1Þ _q þ O2
f q¼

A

D
€Y ; ð4Þ

where Of=2pUSt/D is the vortex-shedding frequency, e and A are the parameters that can be derived from

experimental results. Facchinetti et al. (2004) found that e=0.3 and A=12. q is the dimensionless wake variable defined

by q(t)=2CL(t)/CL0, where CL0 is the reference lift coefficient of a stationary cylinder subjected to vortex shedding and

is usually taken as CL0=0.3 (Blevins, 1990; Pantazopoulos, 1994).

Eqs. (1) and (4) lead to the coupled fluid-structure dynamical system. There are different coupling methods, such as

displacement coupling (Krenk and Nielsen, 1999), velocity coupling (Mureithi et al., 2000; Plaschko, 2000), and

acceleration coupling (Blevins, 1990; Parkinson, 1989). Facchinetti et al. (2004) have shown that the most appropriate

coupling is the acceleration coupling. So, in this first section, for the classical model, an acceleration coupling is used.

Eqs. (1) and (4) can be put in a dimensionless form by introducing the dimensionless terms of t¼ ðk=mÞ1=2T and

y=Y/D (de Langre, 2006)

€y þ l _y þ y¼MO2q;

€q þ eOðq2�1Þ _q þ O2q¼A €y;

(
ð5Þ

where O=StUr is the dimensionless frequency of a self-sustained oscillation of the wake (de Langre, 2006), Ur=U/fnD

the reduced velocity, and fn the vortex-shedding frequency. l is the damping coefficient and M is a mass number, which

scales the effects of the wake on the structure (Facchinetti et al., 2004). They are given by

l¼ 2xþ
g
m
O; M ¼

CL0=2

8p2Stm
; m¼

ms þmf

rD2
; ð6Þ

where x is the structure-reduced damping, x¼ cs=2
ffiffiffiffiffiffiffi
mk
p

.

3. Modified wake oscillator model

The classical wake oscillator model, described in the previous sections, is able to capture the behavior of the system at

high mass-damping ratios (Facchinetti et al., 2004) but, as will be shown, cannot predict its behavior at low mass-

damping ratios. In this section a modified wake oscillator model able to predict the behavior of the system at both low

and high mass-damping ratios will be presented.
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3.1. VIV model

It is believed that a model trying to accurately predict VIV must be able to describe the oscillations in which small

oscillations feed energy into the system and large oscillations remove it (Klamo, 2007). Also VIV is an inherently

nonlinear and self-regulated phenomenon (Sarpkaya, 2004). These characteristics must be considered in every VIV

model.

In other engineering fields, such as electrical engineering (Lynch, 1995), biological and chemical structures (Mirollo

and Strogatz, 1990), and laser dynamics (Wirkus and Rand, 2002), systems with similar characteristics can be found, for

example, interaction of microwave oscillators in the case of electrical engineering. Two important characteristics of

these oscillators are negative resistance (which causes the amplitude of the oscillations to grow) and gain saturation

(which limits the amplitude of the oscillation) (Maas, 1988). In such systems the interaction of oscillators is modeled by

two coupled van der Pol equations (Wirkus, 1999).

These observations can guide one to use two coupled van der Pol equations to model the VIV phenomenon, too.

It means that not only the wake dynamics but also the structural oscillations can be modeled by a van der Pol

equation. The description of the structural oscillations by a van der Pol equation was used in the work of Teufel et al.

(2006). They modeled two aerodynamically excited pendula by two coupled van der Pol equations. Although their

model was not a wake oscillator model, it showed the possibility of using a van der Pol equation for structural

oscillations.

As mentioned in previous sections, two equations of the system can be coupled via three different coupling terms,

including acceleration, velocity, and displacement coupling. While for the classical wake oscillator model, Facchinetti

et al. (2004) showed that the acceleration coupling works better than the other ones, in the present work, the selection of

coupling term is based on the comparison of the results of all three distinct coupling terms.

According to these assumptions, the equations of the system can be expressed as

€y þ elðy2�1Þ _y þ y¼MO2q;

€q þ eOðq2�1Þ _q þ O2q¼ F ;

(
ð7Þ

where F can be A _y;A €y; or Ay for velocity, acceleration, and displacement coupling, respectively. The values of e and A

are obtained by comparing the experimental data with the results of the new model.

3.2. Lift magnification factor

It is generally accepted that cylinder motion has an effect on the lift force. Experimental data demonstrates that lift

increases with response amplitude up to a point, then decreases with further increase in amplitude (Pantazopoulos,

1994). In this section, using the modified wake oscillator model, the relation between lift force and the response

amplitude is derived.

Using a harmonic linearization method for Eq. (7) and assuming y=y0e
iot and q=q0e

i(otþj) and defining a reference

lock-in state by o=1 and O=1, elementary algebra yields

q4
0�4q20�4

l
M

Ay2
0

y20
4
�1

� �
¼ 0: ð8Þ

Considering the real roots of Eq. (8), the vortex lift magnification factor with respect to a stationary structure

experiencing vortex shedding, K=q0/2, is derived as

K ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

l
M

Ay2
0

y2
0

4
�1

� �svuut : ð9Þ

This equation shows the relation between the lift magnification factor and the amplitude of the structural oscillations.

Assuming SG=1, Fig. 2 shows the effect of the value of the coupling parameter A on the system by matching the model

response, Eq. (9), to experimental data on the lift magnification factor. Facchinetti et al. (2004), in the same calculations

for the classical model, proposed the value of A=12. Referring to their results, Fig. 2 shows that the results of the

modified wake oscillator model at A=12 are quite consistent with their results at A=12. Therefore, the value of A=12 is

proposed for the modified wake oscillator model, too.

As mentioned before, experiments show that the lift magnification increases with response amplitude up to a point

and then becomes a decreasing function of y0 (Pantazopoulos, 1994). Facchinetti et al. (2004) showed that the classical
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Fig. 2. Lift magnification K as a function of the imposed structure motion amplitude y0 which is compared to experimental data: },

Vickery and Watkins (1962); � , Bishop and Hassan (1964); *, King (1977); &, Griffin (1980); J, Pantazopoulos (1994). Model

parameters: y, A=9; —, A=12 (proposed value); - - -, A=15.

Fig. 3. Lift magnification K as a function of the imposed structure motion amplitude y0 in low and high mass-damping ratios and the

experimental results of: }, Vickery and Watkins (1962); � , Bishop and Hassan (1964); *, King (1977); &, Griffin (1980); J,

Pantazopoulos (1994). y, SG=0.1; —, SG=1; - - -, SG=5.
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wake oscillator model cannot predict this feature. Also, parameters other than structure oscillation amplitude and

frequency, on which that the lift magnification might depend, were not considered in their approach. But, as can be seen

from Eq. (9), in the new model, in addition to the structure oscillation amplitude and frequency, the effect of mass and

damping parameters is considered. Fig. 3 shows the lift magnification for different values of the mass mass-damping

ratio.

The experimental results of Fig. 3 vary from experiments that were conducted at low mass-damping ratios

(Bishop and Hassan, 1964), to the experiments that were conducted at high mass-damping ratios (Griffin, 1980).

These experimental results illustrate that higher mass-damping ratios cause higher lift magnification factor. Fig. 3

indicates that the modified wake oscillator model can predict this feature. Also it shows that, first, the lift magnification

increases with respect to y0 and then becomes a decreasing function of y0, which is similar to the experimental data.

Therefore, the modified wake oscillator model can predict the behavior of the system for both low and high mass-

damping.
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3.3. Maximum amplitude at lock-in

The maximum structure displacement amplitude at lock-in can be expressed as a function of a single combined mass-

damping parameter, namely the Skop–Griffin parameter SG (Facchinetti et al., 2004)

SG ¼ 8p2Stmx¼
CL0x
2M

; ð10Þ

yielding the so-called Griffin plot. The major task of this section, using the modified wake oscillator model, is to provide

a better approximation of the structure displacement amplitude at lock-in over much of the SG range.

Using a harmonic linearization method for Eq. (7) and assuming y=y0e
iot and q=q0e

i(otþj) and assuming j=p/4
and defining a reference lock-in state by o=1 and O=1, as done by Facchinetti et al. (2004) for the classical model,

Eq. (7) yields

B4�3B3 þ 3B2�
1

e2
M2

l2
þ 1

� �
Bþ

1

e2
M2

l2
�

A

e4
M3

l3
¼ 0; ð11Þ

where B=y0
2/4. Using Eqs. (6) and (10) and assuming M=0.05/m, M/l can be written in terms of the SG parameter

l
M
¼

4SG

CL0
þ 20gO; ð12Þ

hence,

y0 ¼ 2
ffiffiffiffiffiffi
jBj

p
: ð13Þ

Also, using the same process, the classical model yields

y0 ¼ 2
M

l

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

A

e

� �
M

l

� �s
; ð14Þ

which is the reproduction of the result obtained by Facchinetti et al. (2004).

Fig. 4 presents the results of Eqs. (11) and (13) for three different values of e and the result of the classical model,

which are compared with the experimental data of the Griffin plot. While for all values of e the modified model

qualitatively predicts the Griffin plot, it is only for e=0.3 that the results are qualitatively consistent with the

experimental data. Therefore, the value of e=0.3 is proposed for the modified wake oscillator model, which is the same

as the value proposed by Facchinetti et al. (2004) for the classical model. The similarity of the values of these

parameters in the classical and modified models allows a comparison between these two models. Also, Fig. 4 clearly

shows that the results of the modified wake oscillator model are considerably more accurate than the classical model
Fig. 4. Structural oscillation amplitude at lock-in as a function of SG. —, Classical wake oscillator model. Results of the modified wake

oscillator model: - - -, e=0.1;▬, e=0.3; y, e=0.5. Empirical data in water: J, Skop and Balasubramanian (1997). Empirical data in

air: &, Skop and Balasubramanian (1997).
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ones. It also illustrates that the modified model can, both qualitatively and quantitatively, predict the collapse of

amplitude in the Griffin plot.

3.4. Frequency response

In previous sections, the particular choice of coupling terms did not affect the results, because the reference state was

defined as o=1. When the frequency response is sought, however, a coupling model must be considered. In this section,

the frequency response of the modified model is obtained.

Using a process similar to that used by Facchinetti et al. (2004) for the classical model, the equation of the angular

frequency will be

�o6 þ ðO2�p2 þ 2Þo4 þ AMO2o3 þ ðO2ðp2�2Þ�1Þo2�AMO2oþ O2 ¼ 0; ð15Þ

�o6 þ ðO2�p2 þ 2þ AMO2Þo4 þ ðO2ðp2�AM�2Þ�1Þo2 þ O2 ¼ 0; ð16Þ

�o6 þ ðO2�p2 þ 2Þo4 þ ðO2ðp2�2þ AMÞ�1Þo2 þ ð1�AMÞO2 ¼ 0; ð17Þ

which are for velocity, acceleration, and displacement coupling, respectively, and p is elð1
4
y20�1Þ. The value of y0 is

dependent on the value of O. So, for each O the value of y0 is evaluated by solving Eq. (7) numerically, via a fourth

order Runge–Kutta method with an initial condition of q(0)=2.

Also, using the same process, the classical model yields

�o6 þ ð2�l2 þ O2ð1þ AMÞÞo4 þ ðO2ðl2�AM�2Þ�1Þo2 þ O2 ¼ 0: ð18Þ

Figs. 5 and 6 show the comparison of the frequency response of the classical and modified wake oscillator model,

respectively, for the case of low mass-damping ratios, with experimental results of Branković and Bearman (2006) for

m*=0.82 and x=1.5� 10�4. The mass ratio m* is defined as

m� ¼
4ms

prD2l
; ð19Þ

where l is the length of the cylinder, which in the case of Branković and Bearman (2006) is l=584mm. Combining

Eqs. (2), (6) and (19) yields

m�l ¼
4

p
m�Cm: ð20Þ

This experimental data illustrates that during lock-in, the frequency departs from unity and this behavior differs

considerably from what is seen in experiments in high mass-damping ratios. This departure has previously been
Fig. 5. Frequency response of the classical model for low mass-damping ratio (m=1.1615, x=1.5� 10�4). —, The classical wake

oscillator model; J, Branković and Bearman’s experimental results (2006).
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Fig. 6. Frequency respose of the modified model at low values of the mass-damping ratio for three different coupling terms: —,

modified model with (a) velocity coupling, (b) acceleration coupling, (c) displacement coupling; J, experimental data of Branković and

Bearman (2006) for m*=0.82, l=0.584m and x=1.5� 10�4 (m=1.1615); St, Strouhal law branch; W, wake; S, structure; LI, lock-in.
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demonstrated experimentally in recent work (Moe and Wu, 1990; Khalak and Williamson, 1997, 1999; Gharib et al,

1998). This new behavior, as Khalak and Williamson (1997) believe, is the result of imposing a low mass-damping ratio.

As seen, the classical model fails in predicting the behavior of the system in low mass ratio and just the modified wake

oscillator model with velocity coupling can predict this new behavior and shows that the modified model again has a

good agreement with the experimental results. Also Fig. 6 illustrates that, while for the classical model Facchinetti et al.

(2004) have shown that the acceleraton coupling term works better than the other ones, velocity coupling is chosen for

the modified model.

Fig. 7 shows the frequency response of the modified model for another low mass-damping ratio. It shows that the

modified model has a good agreement with the experiment results.

Other branches of frequency response can occur under different conditions. For example, Fig. 8 shows the

comparison of frequency response of the modified model and experimental results from a straked cylinder with

m*=0.83, l=0.584m, and x=2.5� 10�4. The strakes are 3-start with a pitch of five diameters and a height equal

to 10% of the bare cylinder diameter. To model this cylinder, the mass ratio is defined as the effective mass of the
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cylinder-displaced mass of water. Also, the reduced velocity Ur is calculated based on the diameter of the bare cylinder

(Branković and Bearman, 2006).

Fig. 9 shows the frequency response of the modified model at high values of the mass-damping ratio and Feng’s

experimental results (1968) for comparison. As seen, the new model can also precisely predict the behavior of the system

for high mass-damping ratios.

In recent figures all branches of the frequency response are shown. One of these branches corresponds to the Strouhal

law, which is marked as ST in Fig. 6(a). As mentioned before, during lock-in, the frequency of vortex-shedding

synchronizes with the natural frequency of the structure marked as W and S, respectively in Fig. 6(a). For high mass-

damping ratios, these two branches lock onto each other in a constant value near unity. But, if the new branch, marked

as LI in Fig. 6(a), tends to a value between the Strouhal law branch, ST, and unity, it is seen that lock-in will happen in

other frequencies, as happens for low mass-damping ratios.
Fig. 7. Frequency respose of the modified model for low mass-damping ratio: —, modified model; J, experimental data of Khalak and

Williamson (1999) for m*=3.3, l=0.381m and x=0.0026 (m=1.773).

Fig. 8. Frequency respose of the modified model for low mass-damping ratio: —, modified model; J, experimental data of Branković

and Bearman (2006) for m*=0.83, l=0.584m and x=2.5� 10�4 (m=1.1661).
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Fig. 9. Frequency respose of the modified model for high mass-damping ratio: —, modified model; J, experimental data of Feng

(1968) (m=194.55 and l=0.1 (de Langre, 2006)).
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4. Conclusions

Vortex-induced vibration (VIV) can severely limit the operation of structures and may even lead to catastrophic

failure. The behavior of structures during VIV is different for low and high values of the mass-damping ratio. The

comparison of the analysis of the classical wake oscillator model with empirical results showed that the classical wake

oscillator model can only predict the behavior of the system at high mass-damping ratios. The failure of the classical

wake oscillator model at low mass-damping ratios implies the need for a modified model. A modified wake oscillator

has been presented here. In this new model, both structure and wake oscillator were modeled by van der Pol oscillators,

which were coupled via a velocity coupling term. The selection of a velocity coupling term (recall that in the case of the

classical model an acceleration coupling is used) is based on its superior results. A parameter study of the modified

model shows that its parameters, A and e, have the same values as in the classical model. This similarity allows a better

comparison between two models.

It must be noted that although the new model can predict the behavior of the system for different flow velocities and

for both low and high mass-damping ratios, it predicts self-oscillations for the cylinder at zero flow velocity, O=0,

which is not physical.

Analysis of the frequency response, lift magnification factor, and the Griffin plot of this model, along with a

comparison with both experimental results from the literature and the classical model, showed that the modified model

describes the behavior seen at both high and low values of mass-damping ratio. Therefore, the new model can be

applied over a wider range of applications from bridges and tall buildings to offshore structures.
Appendix. Harmonic linearization method

This method can be used to analyze both weakly and strongly nonlinear problems. By solving a simple nonlinear

problem, this method is illustrated below. Consider the Duffing equation as follows:

€x þ x¼ ex3; _xð0Þ ¼ 0 ð21Þ

Physical insight leads us to the response x¼A cosot that satisfies the initial condition. Therefore,

x�ex3 ¼A cosot2eA3 cos3 ot¼A cosot�
eA3

4
ð3 cosotþ cos 3otÞ;¼A cosot 1�

3eA3

4

� �
�
eA3

4
cos 3ot; ð22Þ
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Neglecting the third harmonic terms give

x�ex3 ¼A cosot 1�
3eA3

4

� �
¼ x 1�

3eA3

4

� �
; ð23Þ

so that the Eq. (21) becomes

€x þ 1�
3eA3

4

� �
x¼ 0: ð24Þ

Therefore by assuming the response of the system as x¼A cosot we shall have

o2 ¼ 1�
3eA3

4
; o � 1�

3eA3

8
; x¼A cos 1�

3eA3

8

� �
t: ð25Þ

This result is the same as the response obtained by other methods, such as the method of Poincar�e and Lindstedt or

the Krylov and Bogoliubov method.
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