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Abstract

In this paper, the behavior of an elastically mounted cylinder, subjected to vortex-induced vibrations (VIV), is
investigated by a low-dimensional model. The classical wake oscillator model, as a standard model, predicts the
behavior of the system at high mass-damping ratios but fails in modeling the system at low mass-damping ratios.
A modified wake oscillator model is introduced in order to describe the response of the system over a wide range of
mass-damping ratios. The results of this new model are compared to experimental results from the literature and shown
to be in good agreement. The new model can describe most of the features of vortex-induced vibration phenomenology,
such as the Griffin plot and lock-in domains.
© 2010 Elsevier Ltd. All rights reserved.
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1. Introduction

The highly specialized subject of vortex-induced vibrations (VIVs) is part of a number of disciplines, incorporating
fluid mechanics, structural mechanics, vibrations, computational fluid dynamics (CFD), acoustics, wavelet transforms,
complex demodulation analysis, statistics, and smart materials. They occur in many engineering situations, such as
bridges, stacks, transmission lines, aircraft control surfaces, offshore structures, thermowells, engines, heat exchangers,
marine cables, towed cables, drilling and production risers in petroleum production, mooring cables, moored structures,
tethered structures, buoyancy and spar hulls, pipelines, cable-laying, members of jacketed structures, and other
hydrodynamic and hydroacoustic applications (Sarpkaya, 2004). The practical significance of VIV has led to a large
number of fundamental studies, many of which are discussed in the comprehensive reviews of Parkinson (1989),
Sarpkaya (2004), and Williamson and Govardhan (2007).

The VIV phenomenon is result of the interaction between fluid and structure. A cross-flow flowing past bluff bodies is
usually unsteady. Beyond a critical Reynolds number, the boundary layer will separate from each side of the body to
form the so-called Karman vortex street. The alternately shed vortices from the body generate periodic forces on the
structure, causing a structural vibration. The structural motion in turn influences the flow field, giving rise to nonlinear
fluid-structure interaction. As the flow velocity is increased or decreased so that the shedding frequency approaches the
natural frequency of the structure, the vortex shedding frequency suddenly locks onto the structural natural frequency.
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The resultant vibrations occur at or nearly at the natural frequency of the structure and vortices in the near wake input
energy to the cylinder. Large amplitude vortex-induced structural vibration can result (Blevins, 1990).

As was mentioned above, during lock-in, the frequency of vortex-shedding synchronizes with the natural frequency
of the structure. However, this synchronization does not occur in the same manner at high and low values of mass-
damping ratio. For high mass ratios, these two frequencies become equal within the lock-in regime (Feng, 1968). On the
other hand for low mass ratios the body oscillates at a distinctly higher frequency (Khalak and Williamson, 1997).

The maximum structural displacement at lock-in is expressed as a function of combined mass-damping parameter,
the so-called Skop—Griffin parameter Sg (Skop, 1974). Skop and Griffin compiled several different experimental data to
predict response amplitudes. The results of compilations of many different investigations were plotted in a log—log form
by Griffin (1980). This plot is called the Griffin plot and is extensively used by practicing engineers (Khalak and
Williamson, 1999).

Different semi-empirical models have been used for describing VIV and lock-in phenomena, including wake oscillator
models (Bishop and Hassan, 1963; Hartlen and Currie, 1970; Griffin et al., 1973; Skop and Griffin, 1973), SDOF
models that use a single ordinary differential equation to describe the behavior of structural oscillator (Basu and
Vickery, 1983; Simiu and Scanlan, 1986; Goswami et al., 1993), force decomposition models in which the lift force is
decomposed into a fluid inertia force related to structure displacement and a fluid damping force related to structure
velocity (Griffin, 1980; Griffin and Koopman, 1997), and variational approaches (Mclver, 1973; Benaroya and Wei,
2000).

The coupling of fluctuating lift force and vibrating structure can be modeled by a simple wake oscillator model. In
such models, the wake dynamics is assumed to follow a van der Pol equation. In fact, it is sufficient to have a self-
sustained oscillator with a limit cycle. The bluff body is then modeled by another oscillator excited by the wake
variable (de Langre, 2006). The effect of the motion of the structure on the wake is represented by a forcing term
in the van der Pol equation that can be proportional to displacement, velocity or acceleration of bluff body. Facchinetti
et al. (2004) have shown that the most appropriate forcing term is proportional to the acceleration of the
bluff body.

The classical wake oscillator model fails to predict the variation in the behavior of the system at low values of the
mass-damping ratio. Therefore, a modified wake oscillator model is introduced. Its analysis shows that the modified
model is considerably more accurate than the classical model and can be used over a wide range of mass-damping
ratios.

2. Classical wake oscillator model

Due to their occurrence in various scientific fields, ranging from biology, chemistry, physics to engineering, coupled
nonlinear oscillators have been a subject of particular interest in recent years (Rand and Holmes, 1980; Woafo et al.,
2005). Among these coupled systems, a particular class is the fluid—structure interaction system, which can be modeled
by phenomenological models based on wake oscillators. These models explain and simulate experimental results and
thus help understanding the physics of VIV, especially when computational limits arise for flow-field numerical
simulations. Therefore, in this section the classical wake oscillator model, commonly used in the literature (Facchinetti
et al., 2004; de Langre, 2006), is analyzed.

2.1. VIV model

The structure is an elastically mounted cylinder of diameter D. It is subjected to the fluid flow of steady velocity U
and can oscillate transversely to fluid flow, Fig. 1. The motion of this cylinder can be modeled by a simple linear
equation that is affected by fluid loading

(ms+mp)Y +(c;+ )Y +kY =8, 1)

where overdots mean derivatives with respect to dimensional time 7, and Y is the in-plane displacement of cylinder,
transversely to fluid flow, m, and k are, respectively, the mass and the stiffness of the cylinder in absence of fluid, ¢,
models viscous dissipation in supports, m; is fluid-added mass, which models inviscid inertia effects of fluid (Blevins,
1990), and ¢, the fluid-added damping, and read

27StU
=7 ypD", 2

1
my = ZnCmpDz, ¢r
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Fig. 1. Model of elastically mounted cylinder coupled with wake oscillators for 2-D vortex-induced vibrations.

where p is the fluid density, C,,=1 the added mass coefficient for a circular cylinder (Blevins, 1990), St the Strouhal
number, and y the fluid added damping coefficient depending on the mean sectional drag coefficient Cp (Blevins, 1990).
We assume that y=0.8 (Facchinetti et al., 2004).

The forcing term S models the effects of vortices on structure and is defined as

1
S= EpUZDCL, 3)

where Cy is the fluctuating lift coefficient.
The fluctuating nature of the vortex street can be modeled by a van der Pol oscillator (Nayfeh, 1993)

. . A .
G+ A —1)q+Qq= 77, 4)

D
where Q,=2nUSt/D is the vortex-shedding frequency, ¢ and A are the parameters that can be derived from
experimental results. Facchinetti et al. (2004) found that ¢=0.3 and 4=12. ¢ is the dimensionless wake variable defined
by ¢q(t) = 2Cr(t)/Cro, where Cyy is the reference lift coefficient of a stationary cylinder subjected to vortex shedding and
is usually taken as C;o = 0.3 (Blevins, 1990; Pantazopoulos, 1994).

Egs. (1) and (4) lead to the coupled fluid-structure dynamical system. There are different coupling methods, such as
displacement coupling (Krenk and Nielsen, 1999), velocity coupling (Mureithi et al., 2000; Plaschko, 2000), and
acceleration coupling (Blevins, 1990; Parkinson, 1989). Facchinetti et al. (2004) have shown that the most appropriate
coupling is the acceleration coupling. So, in this first section, for the classical model, an acceleration coupling is used.

Egs. (1) and (4) can be put in a dimensionless form by introducing the dimensionless terms of ¢ = (k/m)'/ 2T and
y=Y/D (de Langre, 2006)

{ J+ay+y=MQP,

5
i+ e~ i + P = A5, ©)

where Q=StU, is the dimensionless frequency of a self-sustained oscillation of the wake (de Langre, 2006), U,=U/f,D
the reduced velocity, and f, the vortex-shedding frequency. 4 is the damping coefficient and M is a mass number, which
scales the effects of the wake on the structure (Facchinetti et al., 2004). They are given by

_ CL0/2 _ms—|—m/
T 8n2Stu’ k= pD?

A=25+%9, 6)

where ¢ is the structure-reduced damping, &= c¢;/2+/mk.
3. Modified wake oscillator model

The classical wake oscillator model, described in the previous sections, is able to capture the behavior of the system at
high mass-damping ratios (Facchinetti et al., 2004) but, as will be shown, cannot predict its behavior at low mass-

damping ratios. In this section a modified wake oscillator model able to predict the behavior of the system at both low
and high mass-damping ratios will be presented.
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3.1. VIV model

It is believed that a model trying to accurately predict VIV must be able to describe the oscillations in which small
oscillations feed energy into the system and large oscillations remove it (Klamo, 2007). Also VIV is an inherently
nonlinear and self-regulated phenomenon (Sarpkaya, 2004). These characteristics must be considered in every VIV
model.

In other engineering fields, such as electrical engineering (Lynch, 1995), biological and chemical structures (Mirollo
and Strogatz, 1990), and laser dynamics (Wirkus and Rand, 2002), systems with similar characteristics can be found, for
example, interaction of microwave oscillators in the case of electrical engineering. Two important characteristics of
these oscillators are negative resistance (which causes the amplitude of the oscillations to grow) and gain saturation
(which limits the amplitude of the oscillation) (Maas, 1988). In such systems the interaction of oscillators is modeled by
two coupled van der Pol equations (Wirkus, 1999).

These observations can guide one to use two coupled van der Pol equations to model the VIV phenomenon, too.
It means that not only the wake dynamics but also the structural oscillations can be modeled by a van der Pol
equation. The description of the structural oscillations by a van der Pol equation was used in the work of Teufel et al.
(2006). They modeled two aerodynamically excited pendula by two coupled van der Pol equations. Although their
model was not a wake oscillator model, it showed the possibility of using a van der Pol equation for structural
oscillations.

As mentioned in previous sections, two equations of the system can be coupled via three different coupling terms,
including acceleration, velocity, and displacement coupling. While for the classical wake oscillator model, Facchinetti
et al. (2004) showed that the acceleration coupling works better than the other ones, in the present work, the selection of
coupling term is based on the comparison of the results of all three distinct coupling terms.

According to these assumptions, the equations of the system can be expressed as

{y + el =)y +y = MQ%q,

7
i+ eQP—1)q + Qg =F, ™

where F can be Ay, Ay, or Ay for velocity, acceleration, and displacement coupling, respectively. The values of ¢ and 4
are obtained by comparing the experimental data with the results of the new model.

3.2. Lift magnification factor

It is generally accepted that cylinder motion has an effect on the lift force. Experimental data demonstrates that lift
increases with response amplitude up to a point, then decreases with further increase in amplitude (Pantazopoulos,
1994). In this section, using the modified wake oscillator model, the relation between lift force and the response
amplitude is derived.

Using a harmonic linearization method for Eq. (7) and assuming y = yee'®’ and ¢=¢e** and defining a reference
lock-in state by w=1 and Q=1, elementary algebra yields
yo —
‘]0 4qo 4—Ay0 2 =0. (®)

Considering the real roots of Eq. (8), the vortex lift magnification factor with respect to a stationary structure
experiencing vortex shedding, K = ¢/2, is derived as

K:— 2+2\/1——A —— ) )

This equation shows the relation between the lift magnification factor and the amplitude of the structural oscillations.
Assuming S;=1, Fig. 2 shows the effect of the value of the coupling parameter 4 on the system by matching the model
response, Eq. (9), to experimental data on the lift magnification factor. Facchinetti et al. (2004), in the same calculations
for the classical model, proposed the value of 4=12. Referring to their results, Fig. 2 shows that the results of the
modified wake oscillator model at 4 =12 are quite consistent with their results at 4 =12. Therefore, the value of A=12is
proposed for the modified wake oscillator model, too.

As mentioned before, experiments show that the lift magnification increases with response amplitude up to a point
and then becomes a decreasing function of y, (Pantazopoulos, 1994). Facchinetti et al. (2004) showed that the classical
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Fig. 2. Lift magnification K as a function of the imposed structure motion amplitude y, which is compared to experimental data: <,

Vickery and Watkins (1962); x, Bishop and Hassan (1964); *, King (1977); O, Griffin (1980); O, Pantazopoulos (1994). Model
parameters: ..., A=9; —, A=12 (proposed value); ---, 4A=15.
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Fig. 3. Lift magnification K as a function of the imposed structure motion amplitude y, in low and high mass-damping ratios and the

experimental results of: ¢, Vickery and Watkins (1962); x, Bishop and Hassan (1964); *, King (1977); O, Griffin (1980); O,
Pantazopoulos (1994). ..., S¢=0.1; —, Sg=1; ---, Sg=5.

wake oscillator model cannot predict this feature. Also, parameters other than structure oscillation amplitude and
frequency, on which that the lift magnification might depend, were not considered in their approach. But, as can be seen
from Eq. (9), in the new model, in addition to the structure oscillation amplitude and frequency, the effect of mass and
damping parameters is considered. Fig. 3 shows the lift magnification for different values of the mass mass-damping
ratio.

The experimental results of Fig. 3 vary from experiments that were conducted at low mass-damping ratios
(Bishop and Hassan, 1964), to the experiments that were conducted at high mass-damping ratios (Griffin, 1980).
These experimental results illustrate that higher mass-damping ratios cause higher lift magnification factor. Fig. 3
indicates that the modified wake oscillator model can predict this feature. Also it shows that, first, the lift magnification
increases with respect to y, and then becomes a decreasing function of y,, which is similar to the experimental data.

Therefore, the modified wake oscillator model can predict the behavior of the system for both low and high mass-
damping.
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3.3. Maximum amplitude at lock-in

The maximum structure displacement amplitude at lock-in can be expressed as a function of a single combined mass-
damping parameter, namely the Skop—Griffin parameter S (Facchinetti et al., 2004)

Sg = 8m2Stué = S (10)
M

yielding the so-called Griffin plot. The major task of this section, using the modified wake oscillator model, is to provide
a better approximation of the structure displacement amplitude at lock-in over much of the S; range.

Using a harmonic linearization method for Eq. (7) and assuming y=yee'® and ¢=qee'(®**? and assuming ¢ =m/4
and defining a reference lock-in state by =1 and 2=1, as done by Facchinetti et al. (2004) for the classical model,
Eq. (7) yields

1 M? 1 M> A4 M

3 2

B*-3B +3B—<8—27+1)B+8—22—2—6—47=0, )

where B = y2/4. Using Egs. (6) and (10) and assuming M =0.05/u, M/J can be written in terms of the Sg parameter
)u 4SG
— = ——+420yQ; 12
MG 0 (12)

hence,

yo =2+/1Bl. (13)

Also, using the same process, the classical model yields

=)o B

which is the reproduction of the result obtained by Facchinetti et al. (2004).

Fig. 4 presents the results of Egs. (11) and (13) for three different values of ¢ and the result of the classical model,
which are compared with the experimental data of the Griffin plot. While for all values of ¢ the modified model
qualitatively predicts the Griffin plot, it is only for £¢=0.3 that the results are qualitatively consistent with the
experimental data. Therefore, the value of ¢=0.3 is proposed for the modified wake oscillator model, which is the same
as the value proposed by Facchinetti et al. (2004) for the classical model. The similarity of the values of these
parameters in the classical and modified models allows a comparison between these two models. Also, Fig. 4 clearly
shows that the results of the modified wake oscillator model are considerably more accurate than the classical model
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Fig. 4. Structural oscillation amplitude at lock-in as a function of Ss. —, Classical wake oscillator model. Results of the modified wake
oscillator model: ---, ¢=0.1; ===, £¢=0.3; ..., ¢=0.5. Empirical data in water: O, Skop and Balasubramanian (1997). Empirical data in
air: O, Skop and Balasubramanian (1997).
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ones. It also illustrates that the modified model can, both qualitatively and quantitatively, predict the collapse of
amplitude in the Griffin plot.

3.4. Frequency response

In previous sections, the particular choice of coupling terms did not affect the results, because the reference state was
defined as w=1. When the frequency response is sought, however, a coupling model must be considered. In this section,
the frequency response of the modified model is obtained.

Using a process similar to that used by Facchinetti et al. (2004) for the classical model, the equation of the angular
frequency will be

—® + (Q*—p? + ot + AMQ* @ + (Q*(P*—2)—1D)w?*—AMQ*w + @* =0, (15)
—® + (Q*—p? + 24+ AMP)o* + (QX(P*—AM=2)—1)w* + Q> =0, (16)
—0® + (Q2—p? + 2)0* + (PP (PP -2+ AM)—1)? + (1—AM)Q* =0, (17)

which are for velocity, acceleration, and displacement coupling, respectively, and p is M(}—yé—l). The value of yq is
dependent on the value of Q. So, for each Q the value of y, is evaluated by solving Eq. (7) numerically, via a fourth
order Runge—Kutta method with an initial condition of ¢(0) = 2.

Also, using the same process, the classical model yields

—0® + Q=22 + Q*(1 + AM))w"* + (P2 —AM—=2)—1)w* + @* =0. (18)

Figs. 5 and 6 show the comparison of the frequency response of the classical and modified wake oscillator model,
respectively, for the case of low mass-damping ratios, with experimental results of Brankovi¢ and Bearman (2006) for
m =0.82 and ¢=1.5 x 107*. The mass ratio m" is defined as

4my
e 19
" npD?l’ (19)
where / is the length of the cylinder, which in the case of Brankovi¢ and Bearman (2006) is /=584 mm. Combining
Egs. (2), (6) and (19) yields
4
T

This experimental data illustrates that during lock-in, the frequency departs from unity and this behavior differs

considerably from what is seen in experiments in high mass-damping ratios. This departure has previously been
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Fig. 5. Frequency response of the classical model for low mass-damping ratio (u=1.1615, £=1.5x 107%. —, The classical wake

oscillator model; O, Brankovi¢ and Bearman’s experimental results (2006).
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Fig. 6. Frequency respose of the modified model at low values of the mass-damping ratio for three different coupling terms: —,
modified model with (a) velocity coupling, (b) acceleration coupling, (c) displacement coupling; O, experimental data of Brankovi¢ and
Bearman (2006) for m"=0.82, 1=0.584m and ¢=1.5x 10~* (u=1.1615); St, Strouhal law branch; W, wake; S, structure; LI, lock-in.

demonstrated experimentally in recent work (Moe and Wu, 1990; Khalak and Williamson, 1997, 1999; Gharib et al,
1998). This new behavior, as Khalak and Williamson (1997) believe, is the result of imposing a low mass-damping ratio.
As seen, the classical model fails in predicting the behavior of the system in low mass ratio and just the modified wake
oscillator model with velocity coupling can predict this new behavior and shows that the modified model again has a
good agreement with the experimental results. Also Fig. 6 illustrates that, while for the classical model Facchinetti et al.
(2004) have shown that the acceleraton coupling term works better than the other ones, velocity coupling is chosen for
the modified model.

Fig. 7 shows the frequency response of the modified model for another low mass-damping ratio. It shows that the
modified model has a good agreement with the experiment results.

Other branches of frequency response can occur under different conditions. For example, Fig. 8 shows the
comparison of frequency response of the modified model and experimental results from a straked cylinder with
m"=0.83, [=0.584m, and ¢=2.5x 10™* The strakes are 3-start with a pitch of five diameters and a height equal
to 10% of the bare cylinder diameter. To model this cylinder, the mass ratio is defined as the effective mass of the
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cylinder-displaced mass of water. Also, the reduced velocity U, is calculated based on the diameter of the bare cylinder
(Brankovi¢ and Bearman, 2006).

Fig. 9 shows the frequency response of the modified model at high values of the mass-damping ratio and Feng’s
experimental results (1968) for comparison. As seen, the new model can also precisely predict the behavior of the system
for high mass-damping ratios.

In recent figures all branches of the frequency response are shown. One of these branches corresponds to the Strouhal
law, which is marked as ST in Fig. 6(a). As mentioned before, during lock-in, the frequency of vortex-shedding
synchronizes with the natural frequency of the structure marked as W and S, respectively in Fig. 6(a). For high mass-
damping ratios, these two branches lock onto each other in a constant value near unity. But, if the new branch, marked
as LI in Fig. 6(a), tends to a value between the Strouhal law branch, ST, and unity, it is seen that lock-in will happen in
other frequencies, as happens for low mass-damping ratios.

0 5 10 15
U,

»

Fig. 7. Frequency respose of the modified model for low mass-damping ratio: —, modified model; O, experimental data of Khalak and
Williamson (1999) for m"=3.3, 1=0.381 m and ¢=0.0026 (n=1.773).

2.5 T T T T T

8 10 12

Sal

Fig. 8. Frequency respose of the modified model for low mass-damping ratio: —, modified model; O, experimental data of Brankovic
and Bearman (2006) for m"=0.83, /=0.584m and £=2.5x 10™* (u=1.1661).
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(1968) (u = 194.55 and A=0.1 (de Langre, 2006)).

4. Conclusions

Vortex-induced vibration (VIV) can severely limit the operation of structures and may even lead to catastrophic
failure. The behavior of structures during VIV is different for low and high values of the mass-damping ratio. The
comparison of the analysis of the classical wake oscillator model with empirical results showed that the classical wake
oscillator model can only predict the behavior of the system at high mass-damping ratios. The failure of the classical
wake oscillator model at low mass-damping ratios implies the need for a modified model. A modified wake oscillator
has been presented here. In this new model, both structure and wake oscillator were modeled by van der Pol oscillators,
which were coupled via a velocity coupling term. The selection of a velocity coupling term (recall that in the case of the
classical model an acceleration coupling is used) is based on its superior results. A parameter study of the modified
model shows that its parameters, 4 and ¢, have the same values as in the classical model. This similarity allows a better
comparison between two models.

It must be noted that although the new model can predict the behavior of the system for different flow velocities and
for both low and high mass-damping ratios, it predicts self-oscillations for the cylinder at zero flow velocity, =0,
which is not physical.

Analysis of the frequency response, lift magnification factor, and the Griffin plot of this model, along with a
comparison with both experimental results from the literature and the classical model, showed that the modified model
describes the behavior seen at both high and low values of mass-damping ratio. Therefore, the new model can be
applied over a wider range of applications from bridges and tall buildings to offshore structures.

Appendix. Harmonic linearization method

This method can be used to analyze both weakly and strongly nonlinear problems. By solving a simple nonlinear
problem, this method is illustrated below. Consider the Duffing equation as follows:

i4+x=ex’, x(0)=0 (21

Physical insight leads us to the response x = 4 cos w¢ that satisfies the initial condition. Therefore,

3 33 ed’ 3ed¥] ed?
x—ex’ = Acoswt—eA’ cos” wt = A cos wt— e (3coswt + cos3wt),= Acoswt|1— | Tcos 3wt, (22)
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Neglecting the third harmonic terms give

:4° A?
x—8x3=Acoscut{1—3g4 }:x{l—?’sT], (23)
so that the Eq. (21) becomes
A3
¥+ {1—394 ]x:O. (24)

Therefore by assuming the response of the system as x = A4 coswt we shall have

43 43 43
w2=1_36f, @zl—%;, x=Acos{l—%}l. (25)

This result is the same as the response obtained by other methods, such as the method of Poincaré and Lindstedt or
the Krylov and Bogoliubov method.
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